На правах рукописи

ВАРАКИН Андрей Николаевич

Совместная гидродеоксигенация-гидроочистка растительных масел и дизельных фракций на пакетной системе массивных и нанесенных MoS₂-содержащих катализаторов

02.00.13 – Нефтехимия

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени кандидата химических наук

CAMAPA - 2020

Работа выполнена на кафедре «Химическая технология переработки нефти и газа» федерального государственного бюджетного образовательного учреждения высшего образования «Самарский государственный технический университет»

<u>Научный руководитель:</u>	НИКУЛЬШИН Павел Анатольевич доктор химических наук, АО «Всероссийский научно-исследовательский институт по переработке нефти» (ВНИИ НП)					
<u>Официальные</u> оппоненты:	ЯКОВЛЕВ Вадим Анатольевич доктор химических наук, ФГБУН «ФИЦ «Институт катализа им. Г.К. Борескова СО РАН»					
	ПОПОВ Андрей Геннадьевич кандидат химических наук, Лаборатория кинетики и катализа Химического факультета МГУ им М.В. Ломоносова					
<u>Ведущая</u> организация:	ФГБУН «Институт нефтехимического синтеза им. А.В. Топчиева РАН» (ИНХС РАН)					

Защита состоится «30» июня 2020 г. в 14 часов 00 мин на заседании диссертационного совета Д 212.217.05 при ФГБОУ ВО «Самарский государственный технический университет» по адресу: 443100, г. Самара, ул. Молодогвардейская, д. 244, ауд. 200.

Отзывы по данной работе в двух экземплярах, заверенные гербовой печатью, просим направлять по адресу: Россия, 443100, г. Самара, ул. Молодогвардейская, 244, Главный корпус, на имя ученого секретаря диссертационного совета Д 212.217.05; тел./факс. (846) 3322122, *e-mail* orgchem@samgtu.ru. В отзыве просим указывать почтовый адрес, номер телефона, электронную почту, наименование организации, должность, шифр и наименование научной специальности.

С диссертацией можно ознакомиться в библиотеке Самарского государственного технического университета (ул. Первомайская, 18) и на сайте диссертационного совета Д 212.217.05 <u>http://d21221705.samgtu.ru.</u>

Автореферат разослан «__» ____2020 г.

Ученый секретарь диссертационного совета Е.А. Ивлева Д 212.217.05 кандидат химических наук, доцент

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы

Многочисленные энергетические кризисы, начиная с 1974 и до наших дней, а также потребность в снижении выбросов парниковых газов и SO_x интенсивному развитию биоэнергетики, В особенности привели К использованию продуктов переработки возобновляемого углеводородного сырья в качестве добавок к моторным топливам или же непосредственно в виде топлива. Однако у биотоплив первого поколения, в частности биодизеля (метиловых эфиров жирных кислот) имеются свои недостатки, ограничивающие производство ИХ И использование, a именно: необходимость утилизировать побочные продукты при переэтерификации растительных масел **(PM)**, низкая температурная И химическая стабильность из-за присутствия кислорода и ненасыщенных двойных связей и др. Минусы можно устранить путем гидродеоксигенации (ГДО) РМ (в частности непищевых И отработанных) c получением смеси парафинонафтеновых углеводородов, называемых биодизелем 2-го поколения (или грин-дизелем).

ГДО проводят на катализаторах, содержащих как благородные металлы, так и сульфиды переходных металлов. Благородные металлы характеризуются высокой активностью, но дороги, и их использование невозможно на существующих установках нефтепереработки, т.к. они могут быть отравлены даже следовыми количествами серы. Сульфидные катализаторы проявляют высокую активность в начальный период, но с течением времени их активность существенно падает из-за закоксовывания и обмена атомов серы в сульфидах на кислород из растительного сырья. Предотвратить дезактивацию добавления можно С помощью сульфидирующих совместной агентов ИЛИ путем организации гидроочистки с нефтяными фракциями на нефтеперерабатывающих что также снизит капитальные расходы при организации заводах, промышленного производства. ГДО триглицеридов жирных кислот в ходе совместной гидроочистки с нефтяными фракциями протекает с высокой скоростью по двум основным маршрутам: гидрирование (ГИД) с выделением H₂O, декарбонилирование или декарбоксилирование (ДЕК) с образованием СО или СО2. Селективность по каждому из маршрутов зависит от условий процесса и состава катализатора. Образующиеся СО/СО2 адсорбируются на активных центрах и препятствуют протеканию целевых реакций гидроочистки (прежде всего, гидродесульфуризации (ГДС) и гидродеазотирования) и ГИД ненасыщенных углеводородов. Таким образом, разработка катализаторов, обладающих высокой ГИД/ДЕК селективностью в ГДО и активностью в гидропревращениях соединений нефти, является актуальной задачей.

Работа выполнена при финансовой поддержке Минобрнауки, проект 14.574.21.0139 (идентификационный номер RFMEFI57417X0139).

<u>Цель работы.</u> Исследование гидрокаталитических превращений кислород- и серосодержащих соединений нефтяных фракций и растительного сырья в присутствии массивных сульфидов переходных металлов и разработка пакетной загрузки катализаторов для совместной гидроочистки РМ и дизельных фракций.

Научная новизна. Впервые исследовано влияние метода синтеза, состава прекурсоров и условий активации массивных MoS₂-содержащих катализаторов на их физико-химические характеристики, морфологию частиц наноразмерной активной фазы и каталитические свойства в реакциях ГДС дибензотиофена (ДБТ) и ГДО олеиновой кислоты (ОК). показаны преимущества массивных МоS₂ Впервые катализаторов, вытравливания полученных путем носителя нанесенных ИЗ сульфидированных катализаторов гидроочистки, в т.ч. отработанных в обладающих промышленных условиях, развитой И площадью поверхности, высокой ГДО и ГДС активностью и высокой гидрирующей селективностью. Впервые обнаружено, что массивные катализаторы чувствительностью обладают меньшей присутствию К кислородсодержащих соединений в процессе совместного протекания ГДС реакций ГДО, ГИД И ПО сравнению нанесенными с промотированными каталитическими системами. Впервые показано, что использование массивных непромотированных MoS₂ катализаторов, полученных вытравливанием Al₂O₃ носителя, в качестве верхнего слоя пакетной загрузки с Co(Ni)Mo/Al₂O₃ системами обеспечивает глубокое протекание целевых реакций в процессе совместной гидропереработки отработанных растительных масел (ОРМ) и прямогонной дизельной фракции (ПДФ) и позволяет получить ультрачистый базовый компонент дизельного топлива класса К5.

Практическая значимость. Установленные в работе зависимости каталитических свойств MoS2-содержащих катализаторов от состава и морфологии частиц активной фазы могут быть использованы при разработке промышленной технологии производства катализаторов гидропереработки совместной смесевого углеводородного сырья. Предложены состав способ катализатора И синтеза совместной гидроочистки ПДФ и ОРМ для получения компонента дизельного топлива. Предложенная схема послойной загрузки массивного и нанесенного катализатора может найти применение при проектировании реакторного

блока установки совместной гидроочистки ПДФ и сырья растительного происхождения.

Положения, выносимые на защиту

- 1. Способ получения массивных MoS₂-содержащих катализаторов для совместной гидроочистки смешанного сырья путем вытравливания носителя из нанесенных сульфидных катализаторов.
- 2. Закономерности влияния метода синтеза массивных катализаторов на их физико-химические свойства, а также каталитическое поведение в реакциях ГДС, ГИД и ГДО.
- 3. Закономерности ингибирующего влияния кислородсодержащих соединений в процессе совместного протекания реакций ГДО, ГИД и ГДС в присутствии массивных MoS₂ катализаторов.
- 4. Результаты сравнения активности одно- и двухслойных пакетных загрузок массивных и нанесенных катализаторов в совместной гидропереработке ОРМ и ПДФ.

Апробация работы. Основные результаты диссертационной работы были представлены на 6-м, 7-м и 8-м международных симпозиумах по молекулярным аспектам катализа сульфидами «MACS-6» (Франция, Сатилье, 2013), «MACS-7» (Нидерланды, Дорн, 2016), «MACS-8» (Франция, Кабур, 2019); на 2-м (Самара, 2014) и 3-м (Нижний Новгород, конгрессах российских катализу «РОСКАТАЛИЗ»; 2017) ПО научно-технологическом симпозиуме «Нефтепереработка: Катализаторы и Гидропроцессы» (Санкт-Петербург, 2014); Европейских конгрессе по катализу «EuropaCat XII» (Казань, 2015); всероссийской научной «Переработка углеводородного конференции сырья. Комплексные решения (Левинтерские чтения)» (Самара, 2016); на XXI Менделеевском съезде по общей и прикладной химии (Санкт-Петербург, 2019).

<u>Личный вклад соискателя.</u> Диссертант лично выполнял описанные в работе синтезы катализаторов; определял каталитические свойства и обрабатывал полученные результаты; принимал участие в интерпретации и обработке данных физико-химических методов анализа. Совместно с научным руководителем проводился анализ полученных данных, их обобщение и подготовка публикаций.

<u>Публикации.</u> По теме диссертации опубликованы 8 статей (в журналах из перечня ВАК), 18 тезисов и материалов докладов конференций.

<u>Объем и структура работы.</u> Диссертация состоит из введения, четырех глав, выводов и списка литературы. Работа изложена на 153 страницах, включает 23 таблицы и 47 рисунков. Список литературы содержит 210 наименований.

СОДЕРЖАНИЕ ДИССЕРТАЦИИ

Во введении рассмотрено современное состояние вопроса переработки возобновляемых источников углеводородов и основные проблемы, возникающие при их совместной гидроочистке с нефтяными фракциями, обоснованы задачи работы и ее актуальность.

В первой главе диссертации приведен обзор литературных данных, посвященный особенностям гидроочистки растительного сырья и типам получаемых из него биотоплив, составу, структуре и методам синтеза массивных сульфидных катализаторов гидроочистки. Рассматривается влияние носителя и промотора (Со или Ni) на активность, селективность и механизмы протекания реакций ГДО и ГДС. Описаны основные методы синтеза массивных сульфидных катализаторов.

Во второй главе приведены сведения об объектах и методах катализаторы исследования. Нанесенные $CoMoS_2/Al_2O_3$, $CoMoS_2/C/Al_2O_3$, NiMoS_2/Al_2O_3 с содержанием MoO_3 19 % мас. готовили методом однократной пропитки Al₂O₃ или зауглероженного C/Al₂O₃ (содержание углерода 2 мас. %) по влагоемкости соответствующими водными растворами H₃PMo₁₂O₄₀, цитратов Ni или Co. Также были синтезированы непромотированные катализаторы с содержанием МоО3 12, 19 (12-MoS₂/Al₂O₃ и 19-MoS₂/Al₂O₃) и 26 мас. % для MoS₂/Al₂O₃ и MoS₂/C/Al₂O₃. Серия массивных катализаторов была синтезирована с применением различных методов и условий активации. Основным прекурсором служил тетратиомолибдат аммония (TTMA) (NH₄)₂MoS₄. Массивный Ref-MoS₂ катализатор был получен разложением ТТМА в кварцевом реакторе при 400°С в токе H₂S/H₂. Массивные катализаторы 4-MoS₂ и 14-MoS₂ получали термическим разложением ТТМА в автоклаве при 350°С и давлении водорода 4 или 14 МПа. Также, разложением TTMA в автоклаве в смеси с Triton X114 или хитозаном были получены Trit-MoS₂ и Chit-MoS₂ катализаторы. По методу «ядрооболочка» нанесением на частицы FeS сульфида молибдена был получен массивный катализатор MoS₂/FeS. Катализаторы Et-MoS₂ и Et-MoS₂/С получали вытравливанием носителя плавиковой кислотой HF из катализаторов MoS₂/Al₂O₃ и MoS₂/C/Al₂O₃. Аналогичным способом был катализатор Et-MoS₂-Ind отработанного получен массивный ИЗ промышленного катализатора гидроочистки.

Синтезированные катализаторы исследовали различными физикохимическими методами: 1) низкотемпературной адсорбции азота на поромере Quantachrome Autosorb 1 для определения текстурных характеристик; 2) термопрограммируемого восстановления (**TIIB**) на анализаторе **TPDRO** 1100 для определения прочности связи «металлсера»; 3) просвечивающей электронной микроскопии высокого разрешения (**IIЭМ ВР**) на приборе Tecnai G2 30 для расчета геометрических характеристик частиц активной фазы; 4) рентгеновской фотоэлектронной спектроскопии (**РФЭС**) на спектрометре Axis Ultra DLD для определения поверхностной концентрации элементов и электронного состояния металлов.

Каталитические свойства синтезированных образцов исследовали в реакциях гидрогенолиза модельных гетероатомных соединений: ГДС ДБТ и ГДО ОК в автоклаве R-201 (Корея, 300 мл), загружали 0.25 г исследуемого образца и 150 мл модельной смеси. В качестве сырья использовали смесь ОК (5 мас. %), диметилдисульфида (1 мас. % серы) в толуоле, внутренним стандартом являлся изооктан (1 мас. %) или смесь ДБТ (0,86 мас. %) в толуоле, внутренним стандартом являлся гексадекан (1 мас. %). Сульфидирование образцов катализаторов проводили в отдельном проточном кварцевом реакторе газовой смесью H₂S/H₂ (10 % об. H₂S) при 400°C в течение 4 ч, после чего катализатор выгружался в главбоксе реакционную смесь В без контакта С воздухом. Каталитические испытания проводили при T=300°C; Р =3.0МПа, скорость перемешивания 300 об/мин. Отбор жидких катализатов осуществляли каждый 1 ч в течение примерно 10 ч с последующей идентификацией их химического состава методом газо-жидкостной хроматографии (ГЖХ). Продукты реакции идентифицировали по временам удерживания коммерчески доступных соединений и методом хромато-масс-спектрометрии на приборе Shimadzu GCMS-QP2010 Ultra.

Константу скорости ГДС ДБТ рассчитывали по уравнению псевдопервого порядка, учитывая избыток водорода:

$$k_{\Gamma \Delta C} = -\frac{m_{\Delta \delta T}}{m_{\kappa a \tau} \cdot t} \cdot \ln(1 - x_{\Gamma \Delta C} / 100), \qquad (1)$$

где $m_{\text{ДБТ}}$ – масса ДБТ, г; $m_{\text{кат}}$ – масса катализатора, г; $x_{\Gamma \text{ДС}}$ – конверсия ДБТ, %; t – время контакта, с.

Продуктами ГДС ДБТ были бифенил (схема 1), образующийся по маршруту прямого обессеривания, а также циклогексилбензол и дициклогексил, которые образуются по маршруту предварительного ГИД.

Схема 1. Схема ГДС ДБТ (ТГДБТ – тетрагидродибензотиофен; БФ – бифенил; ЦГБ – циклогексилбензол; ДЦГ – дициклогексил).

Коэффициент селективности маршрута предварительного гидрирования реакции ГДС ДБТ *S*_{ГИД/(ГИД+ГДС)} рассчитывали по уравнению:

$$S_{\Gamma U \mathcal{I} / (\Gamma U \mathcal{I}^{+} \Gamma \mathcal{I} \mathcal{C})} = \frac{C_{\mathcal{I} \Gamma \mathcal{F}} + C_{\mathcal{I} \mathcal{I} \Gamma}}{C_{\mathcal{F} \Phi} + C_{\mathcal{I} \Gamma \mathcal{F}} + C_{\mathcal{I} \mathcal{I} \Gamma}}$$
(2)

где *С*_{ЦГБ}, *С*_{ДЦГ}, *С*_{БФ} – содержание в продуктах циклогексилбензола, дициклогексила и бифенила, соответственно (мол. %).

Частоту оборотов (**TOF**) (с⁻¹) в исследуемых реакциях на активных центрах – ребрах кристаллитов MoS₂, определяли по формуле:

$$TOF_{\Gamma \square C} = \frac{n_{\square D T} \cdot x_{\square D T}}{n_{M_o} \cdot t \cdot D}$$
(3)

где t – время контакта, при котором конверсия ДБТ составляла 10% (с), $x_{\text{ДБТ}}$ – конверсия ДБТ в момент времени t, $n_{\text{Мо}}$ – количество молибдена в катализаторе, $n_{\text{ДБТ}}$ – количество ДБТ в момент времени t (моль), D – дисперсность частиц MoS₂.

В ГДО ОК селективность *S*_{ГИД/(ГИД+ДЕК)} рассчитывали как долю продуктов, полученных по маршруту ГИД, от суммы концентраций продуктов, образованных как путем декарбоксилирования/ декарбонилирования (ДЕК), так и ГИД (схема 2), по формуле:

$$S_{\Gamma U \mathcal{I} / (\Gamma U \mathcal{I} + \mathcal{I} = K)} = \frac{\sum C_{18}}{\sum C_{18} + \sum C_{17}}$$
(4)

где $\sum C_{18}$ – суммарное содержание С₁₈ углеводородов (мол. %), образованных по маршруту ГДО; $\sum C_{17}$ – суммарное содержание С₁₇ углеводородов (мол. %), образованных по маршруту ДЕК.

Схема 2. Основные маршруты реакции ГДО ОК (пунктиром показан маршрут ДЕК, а прямой линией – маршрут ГИД).

Лучшие катализаторы тестировали в гидроочистке ПДФ (9600 ppm S) и совместной гидроочистке смеси ПДФ и свежего или отработанного подсолнечного масла (до 25 % мас.) в условиях лабораторной проточной установки. Испытания проводили при 340°C; давлении H₂ 4.0 МПа; ОСПС 1, 2, 4 и 7 ч⁻¹; H₂/сырье 500 нл/л; объеме загруженного катализатора (пакета катализаторов) 4 см³ (**рис. 1**).

Рис. 1. Схема послойной загрузки реактора

Содержание серы в гидрогенизатах определяли с помощью анализатора Multi EA 5000. Наличие остаточных триглицеридов – методом ИК-спектроскопии на приборе Avatar 360.

Третья глава, состоящая из двух разделов, посвящена изучению реакций гидрогенолиза кислород- и серосодержащих соединений в присутствии массивных и нанесенных сульфидных катализаторов.

В первом разделе описаны составы и физико-химические свойства синтезированных катализаторов. Рентгенофлуоресцентный анализ

подтвердил почти стехиометрический состав MoS₂-содержащих образцов (**табл. 1**), а также показал отсутствие следовых количеств алюминия и фтора после травления HF.

Karanuparan	Содержание, мас. %			S/Mo	CoMo	Ni/Mo	D/Mo	
Катализатор	Ν	С	Η	-3/1010		11/1/10	1/1010	
Ref-MoS ₂	0.4	1.1	0.07	1.8	-	-	-	
Et-MoS ₂	0.3	2.2	0.61	1.8	-	-	-	
Et-MoS ₂ /C	0.3	5.9	0.67	2.0	-	-	-	
Et-MoS ₂ -Ind	-	-	-	2.2	0.06	-	-	
$4-MoS_2$	1.0	10.5	0.25	1.8	-	-	-	
$14-MoS_2$	1.5	6.0	0.32	2.1	-	-	-	
Trit-MoS ₂	2.4	31.3	0.65	2.0	-	-	-	
Chit-MoS ₂	1.2	7.5	0.42	2.0	-	-	-	
MoS ₂ /FeS	0.9	3.2	0.33	2.0	-	-	-	
MoS_2/Al_2O_3	-	0.1	-	1.8	-	-	0.14	
$MoS_2/C/Al_2O_3$	-	1.8	-	2.0	-	-	0.12	
$12-MoS_2/Al_2O_3$	-	-	-	2.1	-	-	-	
$19-MoS_2/Al_2O_3$	-	-	-	2.3	-	-	-	
CoMoS ₂ /Al ₂ O ₃	_	-	-	2.1	0.40	-	-	
CoMoS ₂ /C/Al ₂ O ₃	-	-	-	1.9	0.47	-	-	
NiMoS ₂ /Al ₂ O ₃	-	-	-	2.0	-	0.58	-	

Таблица 1. Элементный состав синтезированных катализаторов

На рис. 2 показаны кривые адсорбции-десорбции азота для некоторых массивных и нанесенных катализаторов.

Рис. 2. Кривые адсорбции-десорбции азота при 77 К для некоторых массивных и нанесенных катализаторов

Показанные изотермы относятся к типу IV со ступенчатой десорбцией выше относительного давления 0.4, что характерно для мезопористых материалов. Петля гистерезиса на кривых адсорбциидесорбции катализатора Ref-MoS₂ соответствует типу H3. характерному для материалов с плоскопараллельной организацией частиц. В свою очередь, петля гистерезиса образцов NiMoS₂/Al₂O₃, MoS_2/Al_2O_3 относится к наиболее характерному ДЛЯ оксида алюминия типу H4. Катализатор Et-MoS₂ показал наличие петли гистерезиса, сочетающей в себе признаки типа H2 и H4, отвечающей наличию сложных связанных мезопор, с большими полостями эффективного размера. Кроме того, полученные различного катализаторы сильно отличаются по величине среднего объема пор от 0.09 до 0.97 см³/г.

Результаты определения текстурных характеристик массивных и представлены табл. 2. катализаторов В Среди нанесенных Chit-MoS₂ приготовленных катализаторов наибольшую имеет массивный катализатор Ref-MoS₂ площадь поверхности, a наименьшую. Как правило, ненанесенные (массивные) катализаторы имеют гораздо меньшую площадь поверхности, чем нанесённые катализаторы.

Vozozupozoz	Удельная	Vacati un tă	Объем пор, имеющих					
	площадь	у дельный	радиус, %					
Катализатор	поверхности,	00600 mop,	< 20	20-40	40-85	>85		
	M^2/Γ	CM /1	Å	Å	Å	Å		
Ref-MoS ₂	11	0.09	5	10	14	71		
Et-MoS ₂	121	0.21	59	15	12	14		
Et-MoS ₂ -Ind	44	0.09	36	4	14	46		
Trit-MoS ₂	231	0.54	73	5	8	13		
Chit-MoS ₂	275	0.97	75	7	6	11		
MoS ₂ /FeS	45	0.15	11	11	13	65		
CoMoS ₂ /Al ₂ O ₃	175	0.25	45	38	14	3		
NiMoS ₂ /Al ₂ O ₃	162	0.28	31	51	15	3		

Таблица 2. Текстурные характеристики некоторых катализаторов

Использование органических добавок и высокого давления водорода в процессе синтеза катализаторов 14-MoS₂, Trit-MoS₂ и Chit-MoS₂ позволило достичь развитой площади поверхности. Вытравливание носителя из MoS₂/Al₂O₃ катализатора позволило получить массивный образец Et-MoS₂, площадь поверхности которого оказалась более чем в 10 раз выше по сравнению с

массивным дисульфидом молибдена Ref-MoS₂, синтезированным традиционным методом – термическим разложением TTMA. Различия в площади поверхности массивных катализаторов могут быть связаны с тем, что в процессе получения Ref-MoS₂ из TTMA происходит спекание частиц MoS_2 под воздействием высоких температур. В свою очередь, синтез Et-MoS₂ путем вытравливания носителя при мягких условиях (40 °C) позволяет сохранить порометрический объем.

На **рис. 3** показаны типичные ПЭМ ВР микрофотографии катализаторов. Черные нитевидные полосы соответствуют слоям кристаллитов MoS₂, межплоскостное расстояние в которых близко к 0.65 нм.

Рис. 3. ПЭМ-снимки образцов массивных катализаторов: Trit-MoS₂ (a), MoS₂/FeS (b), Ref-MoS₂ (c), 14-MoS₂ (d), 4-MoS₂ (e), Et-MoS₂ (f)

Для нанесенных катализаторов наиболее характерны одно- и двухслойные частицы, а для массивных чаще встречаются многослойные частицы дисульфида молибдена. Морфологические характеристики кристаллитов активной фазы приведены в табл. 3.

									Pac	спред	елен	ие	
			Распределение частиц по					част	частиц по числу				
I/ ama mun ama a	\overline{L}	N		дл	ине	(отн.	. %)		слое	слоев в упаковке			
катализатор	(нм)	IN								(oth. %)			
			<2	2–4	4–6	6–8	8-10	>10	1	2	3	>1	
			HM	HM	HM	HM	HM	HM	1	L	5	<i>></i> 4	
Ref-MoS ₂	3.9	2.9	21	39	23	10	3	4	23	19	20	38	
Et-MoS ₂	5.3	3.7	6	33	33	14	7	7	-	10	25	65	
Et-MoS ₂ -Ind	4.9	3.1	7	35	37	12	6	2	2	22	30	46	
Trit-MoS ₂	14.4	3.8	-	1	1	6	8	83	-	8	21	71	
MoS ₂ /FeS	22.4	3.1	-	2	3	11	6	77	-	3	23	75	
CoMoS ₂ /Al ₂ O ₃	2.4	1.4	38	55	6	1	-	-	60	28	9	3	
NiMoS ₂ /Al ₂ O ₃	3.0	1.7	16	50	25	6	2	2	43	35	14	8	
_													

Таблица 3. Морфология частиц активной фазы некоторых катализаторов

 \overline{L} - средняя длина частиц активной фазы, \overline{N} - среднее число слоев MoS₂ в упаковке.

Анализ РФЭС спектров полученных катализаторов (**рис. 4**) свидетельствует о том, что вытравливание носителя в процессе синтеза массивных образцов приводит к растворению оксидов молибдена, присутствующих на поверхности. Также было подтверждено отсутствие в массивных катализаторах следов алюминия, фтора и фосфора.

Рис. 4. РФЭС спектры линии Мо 3d массивного катализатора $Et-MoS_2/C$ и его нанесенного предшественника $MoS_2/C/Al_2O_3$

Во втором разделе приводятся результаты изучения реакций гидрогенолиза кислород- и серосодержащих соединений в присутствии массивных и нанесенных непромотированных катализаторов. Константы скорости $k_{\Gamma AC}$ и значения частоты оборотов *TOF* для массивных и нанесенных катализаторов приведены в **табл.** 4. Число *TOF* для вытравленных катализаторов было в 2-3 раз выше,

чем у нанесенных систем. Также значения селективности $S_{\Gamma U Z/(\Gamma U Z^+ \Gamma Z C)}$ и $k_{\Gamma Z C}$ для массивных катализаторов были значительно выше аналогичных для непромотированных Mo/Al₂O₃ и Mo/C/Al₂O₃.

	S_{Γ ИД/(Г	ИД+ГДС)	$k_{\rm Euc} \times 10^4$	$TOF \times 10^4$	
Катализатор	при кон	нверсии	(a^{-1})	(a^{-1})	
	10 %	30 %	(0)		
Ref-MoS ₂	0.68	0.83	0.99 (±0.04)	11.0 (±0.4)	
Et-MoS ₂	0.80	0.86	2.98 (±0.10)	41.2 (±1.4)	
Trit-MoS ₂	0.67	0.77	0.54 (±0.01)	35.4 (±1.2)	
Chit-MoS ₂	0.50	0.66	0.41 (±0.06)	9.6 (±0.3)	
MoS ₂ /FeS	0.68	0.76	0.35 (±0.03)	16.5 (±0.5)	
MoS_2/Al_2O_3	0.55	0.62	0.29 (±0.01)	13.5 (±0.2)	
$MoS_2/C/Al_2O_3$	0.58	0.64	0.39 (±0.01)	20.3 (±0.3)	

Таблица 4. Каталитические свойства MoS₂ катализаторов в ГДС ДБТ

На рис. 5 (слева) показана зависимость ТОГ в ГДС ДБТ, нормированной на количество краевых центров плит в MoS₂, для массивных и нанесенных катализаторов от средней длины и числа слоев в кристаллите MoS₂. Катализаторы с более низкой длиной MoS₂ и высоким числом слоев в упаковке, и минимальным количеством азота имели максимальные значения ТОГ в ГДС ДБТ. селективности маршрута Зависимость предварительного гидрирования S_{ГИД/(ГИД+ГДС)} от морфологии частиц активной фазы показана на рис. 5 (справа). Более высокая селективность была при минимальных значениях L, и следовательно, достигнута максимальной доле угловых координационно-ненасыщенных атомов Мо, *N* ~ 3 и наименьшем содержании азота в катализаторах.

Согласно **рис. 6**, содержание углерода и азота в массивных катализаторах значительно влияет на их активность. Присутствие азота может быть объяснено использованием азотсодержащего ТТМА в качестве прекурсора. Вероятно, присутствие аммония в процессе синтеза в автоклавном реакторе привело к включению основных атомов азота в кристаллиты MoS_2 и, как следствие, к ингибированию активности в ГДС ДБТ. Низкая активность катализаторов с высоким содержанием углерода, вероятно, является следствием ограниченного доступа к активным центрам из-за кокса, отлагающегося на поверхности частиц MoS_2 .

Рис. 5. 3D диаграммы зависимости селективности *S*_{ГИД/(ГИД+ГДС)} (справа) и частоты оборотов в ГДС ДБТ *TOF* (слева) от средней длины и количества слоев в MoS₂. (Числа рядом с обозначениями катализаторов показывают содержание азота, в мас. %).

Рис. 6. 3D диаграмма зависимости $k_{\Gamma Д C}$ и содержания углерода от количества поглощенного H₂ и $T_{\text{макс}}$ пика восстановления. (Числа рядом с обозначениями катализаторов показывают содержание азота, в мас. %).

Катализаторы обладают значительными различиями В ГДО селективности маршрутов протекания реакции олеиновой (рис. Нанесенные кислоты 7). промотированные катализаторы обладают более низкими значениями селективности *S*_{ГИД/(ГИД+ДЕК)}. Напротив, непромотированные MoS₂/Al₂O₃ и массивный Ref-MoS₂ проявили примерно одинаковую селективность (на уровне 0.85). Катализатор Et-MoS₂, полученный путем вытравливания носителя, показал наивысшую селективность, близкую к 1.0, т.е. практически нацело гидрирует ОК без образования СО и СО₂. Отсутствие в ингибиторов гидрокаталитических реакций таких продуктах превращений как СО и СО₂ позволит эффективно протекать процессу гидропереработки растительных совместной триглицеридов И нефтяных фракций.

Рис. 7. Зависимость *S*_{ГИД/(ГИД+ДЕК)} в ГДО ОК от времени контакта

Четвертая глава посвящена изучению процесса совместной гидроочистки ПДФ и ОРМ в присутствии массивных катализаторов и состоит из 2 разделов.

В *первом* разделе исследуется влияние концентрации ОРМ на глубину реакций ГИД, ГДС и гидродеазотирования в процессе совместной гидроочистки.

В табл. 5 представлены результаты испытаний различных типов загрузки катализаторов в гидроочистке ПДФ и смеси «ПДФ + ОРМ 15 мас. %». Массивный катализатор Et-MoS₂-Ind показал самую низкую

активность в гидроочистке ПДФ, что может быть связано с отсутствием в структуре частиц активной фазы атомов промоторов Ni или Co, которые играют решающую роль в ГДС активности катализаторов гидроочистки. Нанесенные катализаторы CoMoS/Al₂O₃ и NiMoS/Al₂O₃ обладали близкой активностью в гидроочистке ПДФ. Повышение активности в ГДС ПДФ пакетной системы Et-MoS₂-Ind//CoMoS/Al₂O₃ в 3 раза для ОСПС = $1 \, 4^{-1}$ относительно однослойной загрузки CoMoS/Al₂O₃ может быть обусловлено высокой гидрирующей способностью массивного катализатора, что позволяет предварительно прогидрировать алкилзамещенные производные ДБТ и облегчить их ГДС на последующих слоях.

Активность в гидроочистке смесевого сырья послойных систем Et-MoS₂-Ind//CoMoS/Al₂O₃ и Et-MoS₂-Ind//NiMoS/Al₂O₃ по сравнению с соответствующими однослойными CoMoS/Al₂O₃ NiMoS/Al₂O₃ И увеличивается в 2-4 раза, что может быть обусловлено высокой верхнего ГИД/ДЕК селективностью катализатора Et-MoS₂-Ind, обеспечивающей селективное протекание ГДО ОРМ по маршруту гидрирования, с пониженным образованием СО и СО2, ингибирующих ГДС ПДФ. При этом использование растительного не сернистого компонента в смесевом сырье способствует снижению концентрации серосодержащих соединений, что облегчает достижение более полного гидрообессеривания.

Таблица 5. Результаты каталитических испытаний различных типов загрузки массивных и нанесенных катализаторов в гидроочистке ПДФ и смеси «ПДФ + OPM 15 мас. %» (*Условия: T = 340 °C, P(H₂) = 4.0 МПа, OCПC* = $1 \ u^{-1}$, $H_2/сырье = 700 \ нл/л$)

	Тип загрузки катализатора(ов)					
Показатель					Et-MoS ₂ -Ind	Et-MoS ₂ -Ind
гидрогенизата	Сырье	Et-MoS ₂ -Ind	$CoMoS_2/AI_2O_3$	N_1MOS_2/Al_2O_3	CoMoS ₂ /Al ₂ O ₃	NiMoS ₂ /Al ₂ O ₃
Плотность при 20 °С,	ПДФ	0.84	0.84	0.85	0.84	0.84
<u>г/см³</u>	ПДФ + OPM 15 мас. %	0.86	0.85	0.85	0.88	0.89
	ПДФ	262	106	100	30	57
Содержание серы, ррш 5	ПДФ + OPM 15 мас. %	540	165	137	104	31
	ПДФ	8	7	5	7	5
Содержание азота, ррт N	ПДФ + OPM 15 мас. %	22	18	16	20	7
Содержание	ПДФ	1.59	1.43	1.35	1.51	1.46
бициклических ароматических УВ, мас. %	ПДФ + ОРМ 15 мас. %	1.96	1.54	1.40	1.62	1.49
Содержание	ПДФ	0.52	0.38	0.33	0.42	0.36
трициклических ароматических УВ, мас. %	ПДФ + ОРМ 15 мас. %	0.51	0.42	0.38	0.49	0.43
Содержание	ПДФ	-	-	-	-	-
СО и СО ₂ в УВГ, об. %	ПДФ + OPM 15 мас. %	0.24	0.55	0.57	0.33	0.35
Площадь пика (у.е.) при	ПДФ	-	-	-	-	-
1710-1780 см ⁻¹ ИК- спектров	ПДФ + OPM 15 мас. %	Отс.	Отс.	Отс.	Отс.	Отс.
Выход гидрогенизата на	ПДФ	97.8	96.7	96.5	97.2	96.9
сырье, масс. %.	ПДФ + OPM 15 мас. %	95.4	94.5	94.2	94.8	94.5

Проведение процесса гидроочистки смесевого сырья ПДФ + ОРМ 15 мас. % на наиболее оптимальной ранжированной системе Et-MoS₂-Ind//NiMoS/Al₂O₃ в условиях: (T = 340 °C, P(H₂) = 4.0 MПa, OCПC = 1 ч⁻ ¹, H_2 /сырье = 700 нл/л), позволило получить гидрогенизат с содержанием серы 31 ррт, что не удовлетворяет требованиям, предъявляемым к дизельному топливу класса К5 по ГОСТ 32511-2013. Для снижения количества серы был проведен дополнительный эксперимент в тех же условиях, но с повышением давления водорода до 5 МПа. Результаты определения физико-химических свойств полученного гидрогенизата (время непрерывной работы – 300 ч), исходных ПДФ и смесевого сырья представлены в табл. 6. Катализатор демонстрировал стабильные свойства в течение 300 ч непрерывной работы. После проведения гидроочистки цетановое число выросло на 9 п. по сравнению с ПДФ. сторону понижения изменились такие характеристики В как кинематическая вязкость и температура вспышки в закрытом тигле.

Таблица	6.	Физико-химические	свойства	ПДФ,	смесевого	сырья	И
гидрогени	ізат	a					

Показатель	ГОСТ 32511 -2013	ПДФ	ПДФ+ ОРМ 15 % масс.	Гидро- генизат
Цетановое число, п.	51	51	-	60
Плотность при 15 °С, кг/м ³	820-845	841	850	837
Фракционный состав:				
при 250 °C перегоняется,	65	20	20	35
менее, % об.				
при 350 °C перегоняется,	85	95	94.5	97
не менее, % об.				
Т95 % об, °С, не выше	360	350	352	344
Кинематическая вязкость	2.000	5.1	5.5	3.4
при 40°С, мм²/с	-4.500			
Т _{вспышки} в закрытом тигле, °С,	55	84	95	68
не ниже				
Предельная Т фильтруемости	-5	-6	-7	-4
(сорт C), °С				
Содержание серы, не более,	10	9600	8250	6
класс К5, ррт				
Содержание полициклических	8.0	8.8	7.3	2.6
ароматических УВ, % мас, не				
более				

Однако если повышение цетанового числа И понижение содержания серы можно отнести к плюсам процесса совместной переработки, то увеличение предельной температуры фильтруемости на 2 °С по сравнению с исходной ПДФ негативно сказывается на эксплуатационных свойствах полученного компонента моторных которого топлив, для устранения может дополнительно проведение процесса изодепарафинизации потребоваться и/или введения депрессорно-диспергирующих присадок.

выводы

1. Получена серия массивных МоS2-содержащих катализаторов, отличающихся удельной площадью поверхности (11-275 м²/г), объемом пор (0.09-0.97 см³/г), содержанием углерода и азота, числом слоёв в упаковке (2.9-4.2) и длиной кристаллитов (3.9-22.4 нм). Установлена взаимосвязь каталитических свойств приготовленных катализаторов в ГДС ДБТ и ГИД нафталина с их составом и физико-химическими характеристиками. Показано, что содержание углерода и азота в катализаторах оказывает существенное влияние на их активность. Высокое содержание азота коррелирует с низкой активностью в ГДС ДБТ, вероятно, из-за включения основного азота в кристаллиты MoS₂, рассмотренных поэтому методов среди синтеза массивных катализаторов наиболее предпочтительным является вытравливание носителя из нанесенных сульфидных образцов.

катализатор Массивный Et-MoS₂, 2. полученный путем вытравливания носителя из непромотированного MoS₂/Al₂O₃ образца, проявил близкую к NiMoS₂/Al₂O₃ ГДО активность и самую высокую селективность маршрута гидрирования (0.94), что указывает на практически полное протекание реакции ГДО ОК без образования СО и СО₂, проявляющих сильные ингибирующие свойства. Этот катализатор обладает более развитой поверхностью (в 10 раз выше) и объемом пор сравнению Ref-MoS₂ катализатором, С синтезированным ПО традиционным методом – термическим разложением ТТМА.

3. Обнаружено, что массивные катализаторы обладают меньшей чувствительностью к присутствию кислородсодержащих соединений в процессе совместной гидроочистки ДБТ и нафталина, что свидетельствует о возможности протекания реакций ГДО и ГДС без взаимного ингибирования, вызванного конкурирующей адсорбцией реактантов.

4. Массивные катализаторы на основе MoS₂ продемонстрировали в 2 раза более высокую ГИД активность и селективность по маршруту ГИД в ГДС ДБТ по сравнению с нанесенными непромотированными катализаторами Mo/Al₂O₃ и Mo/C/Al₂O₃ и почти в 5 раз более высокую селективность маршрута предварительного ГИД относительно промотированных Co(Ni)Mo/Al₂O₃ систем.

5. Использование массивного MoS₂ катализатора, полученного вытравливанием Al₂O₃ носителя из отработанного промышленного катализатора гидроочистки, в качестве верхнего слоя пакетной загрузки обеспечивает полное превращение триглицеридов с пониженным содержанием СО и СО2 в процессе совместной гидродеоксигенациигидроочистки смеси ПДФ и ОРМ. NiMoS₂/Al₂O₃ катализатор в качестве второго слоя является более предпочтительным для совместной гидропереработки ΠДΦ OPM благодаря смеси И меньшей чувствительности к следам СО и СО2. Исследования показали совместной переработки смесей ПДФ OPM возможность И использованием каталитической системы с двойным слоем без потери активности в ГДС и их пригодность для переработки непищевых растительных масел.

6. Проведение процесса совместной гидродеоксигенациигидроочистки смесевого сырья ПДФ и 15 мас. % ОРМ при следующих условиях: T = 340 °C, P(H₂) = 5.0 МПа, ОСПС = 1 ч⁻¹, H₂/сырье = 700 нл/л, позволяет получить гидрогенизат, удовлетворяющий всем основным требованиям, предъявляемым к дизельному топливу класса K5 по ГОСТ 32511-2013.

Основное содержание диссертации изложено в следующих публикациях:

Статьи в журналах из перечня ВАК

- Варакин, А.Н. Влияние кислородсодержащих соединений на глубину и селективность гидропревращений дибензотиофена и нафталина на массивных и нанесенных Co(Ni)MoS₂ катализаторах / А.Н. Варакин, В.А. Сальников, А.А. Пимерзин, П.А. Никульшин // Журнал прикладной химии. – 2019. – №12. – С.1622-1632.
- Varakin, A.N. Toward HYD/DEC selectivity control in hydrodeoxygenation over supported and unsupported Co(Ni)-MoS₂ catalysts. A key to effective dual-bed catalyst reactor for co-hydroprocessing of diesel and vegetable oil / A.N. Varakin, A.V. Mozhaev, A.A. Pimerzin, P.A. Nikulshin // Catal. Today. – 2019. DOI: 10.1016/j.cattod.2019.06.005.
- 3. Варакин, А.Н. Гидродеоксигенация олеиновой кислоты на массивных и

нанесенных катализаторах (Ni)MoS₂ с целью получения грин-дизеля / А.Н. Варакин, А.В. Фослер, С.П. Веревкин, А.А. Пимерзин, П.А. Никульшин // Химия и технология топлив и масел. – 2018. – №6. – С.13-19.

- Varakin, A.N. Comparable investigation of unsupported MoS₂ hydrodesulfurization catalysts prepared by different techniques: Advantages of support leaching method / A.N. Varakin, A.V. Mozhaev, A.A. Pimerzin, P.A. Nikulshin // App. Catal.B: Environ. – 2018. –№238. – P. 498-508.
- Pimerzin, A.A. Comparison of citric acid and glycol effects on the state of active phase species and catalytic properties of CoPMo/Al₂O₃ hydrotreating catalysts / A.A. Pimerzin, A.N. Varakin, A.V. Mozhaev, K.I. Maslakov, P.A. Nikulshin // App. Catal. B: Environ. – 2017. –№205. – P. 93-103.
- Varakin, A.N. Beneficial role of carbon in Co(Ni)MoS catalysts supported on carbon-coated alumina for co-hydrotreating of sunflower oil with straight-run gas oil /A.N. Varakin, V.A. Salnikov, M.S. Nikulshina, K.I. Maslakov, A.V. Mozhaev, P.A. Nikulshin // Catal. Today. – 2017. – №292. – P. 110-120.
- 7. Nikulshin, P.A. The use of CoMoS catalysts supported on carbon-coated alumina for hydrodeoxygenation of guaiacol and oleic acid / Nikulshin P.A., Salnikov V.A., Varakin A.N., Kogan V.M. // Catal. Today. 2016.–№271. –P. 45-55.
- Варакин, А.Н. Исследование эффекта спилловера водорода в присутствии CoS_x/Al₂O₃ и массивного MoS₂ в реакциях гидрообессеривания, гидродеазотирования и гидродеоксигенации / А.Н. Варакин, П.А. Никульшин, Ал.А. Пимерзин, В.А. Сальников, А.А. Пимерзин // Журнал прикладной химии. – 2013. – №86. – Р.771-779.

Тезисы и доклады на конференциях

- Варакин, А.Н. Влияние додекановой кислоты на гидропревращения дибензотиофена и нафталина на массивных и нанесенных Co(Ni)MoS₂ катализаторах / А.Н. Варакин, В.А. Сальников, А.А. Пимерзин, П.А. Никульшин // материалы XXI Менделеевского съезда по общей и прикладной химии. – Санкт-Петербург, 2019. – С. 32.
- Varakin, A.N. Dependence of the oleic acid hydrodeoxygenation selectivity on the type of supported and unsupported catalysts / A.N. Varakin, A.V. Mozhaev, A.A. Pimerzin, S.P. Verevkin, A.V. Fosler, P.A. Nikulshin // Molecular Aspect of Catalysis by Sulfide. –Cabourg, France, 2019. – Poster 40.
- Varakin, A.N. The use of dual-bed system for co-processing a mixture of waste sunflower oil and straight-run gas oil / A.N. Varakin, A.V. Mozhaev, A.A. Pimerzin, A.V. Fosler, P.A. Nikulshin // Molecular Aspect of Catalysis by Sulfide. – Cabourg, France, 2019. – Poster 5.
- Varakin, A.N. Preparation of unsupported carbon-containing MoS₂ catalysts for hydrodeoxygenation of oleic acid / A.N. Varakin, A.V. Fosler, A.A. Pimerzin, P.A. Nikulshin // abstracts of III Scientific-Technological Symposium Catalytic hydroprocessing in oil refining. – Lyon, France, 2018. – P. 94.

- Varakin, A.N. Advantages of dual-bed system for co-processing a mixture of straight-run diesel and waste sunflower oil / A.N. Varakin, A.V. Mozhaev, A.A. Pimerzin, A.V. Fosler, P.A. Nikulshin // 12th International Symposium on Heterogeneous Catalysis: a motor of economy. – Sofia, Bulgaria, 2018. – 021.
- 13. Варакин, А.Н. Изучение роли носителя (Co)MoS₂-катализаторов на селективность и активность в ГДО олеиновой кислоты / А.Н. Варакин, А.О. Лыжова, П.А. Никульшин // материалы III Российский конгресс по катализу «РОСКАТАЛИЗ». Нижний Новгород, 2017. С.261.
- Varakin, A.N. Unsupported MoS₂ HDS catalysts prepared with ammonium tetrathiomolybdate and various surfactants / A.N. Varakin, Al.A. Pimerzin, P.A. Nikulshin, A.A. Pimerzin // International Symposium on Advances in Hydroprocessing of Oil Fractions ISAHOF. – Mexico, 2017. – P. 163.
- 15. Варакин, А.Н. Совместная гидроочистка прямогонной дизельной фракции и отработанного растительного масла в присутствии массивного MoS₂ и пакета катализаторов / А.Н. Варакин, А.В. Можаев, А.А. Пимерзин, А.В. Фослер, П.А. Никульшин // материалы научно-практической конференции "Актуальные задачи нефтеперерабатывающего и нефтехимического комплекса". Х Форум "Стратегия объединения". – Самара, 2017. – С.41.
- 16. Варакин, А.Н. Влияние носителя (Со)MoS₂-катализаторов на их активность и селективность в гидродеоксигенации олеиновой кислоты / А.Н. Варакин, А.О. Лыжова, П.А. Никульшин // материалы Всероссийской научной конференции «Переработка углеводородного сырья. Комплексные решения» (Левинтерские чтения-2016). – Самара, 2016. – С. 66.
- Varakin, A.N. Influence of activation conditions on unsupported MoS₂ prepared by one step hydrothermal method / A.N. Varakin, P.A. Nikulshin, A.V. Mozhaev // 7th International Symposium on the Molecular Aspects of Catalysis by Sulfides. – Dorn, Netherlands, 2016. – Poster 11.
- Nikulshin, P.A. The use of CoMoS catalysts supported on carbon-coated alumina for hydrodeoxygenation of guaiacol and oleic acid / P.A. Nikulshin, V.A. Salnikov, A.N. Varakin, A.A. Pimerzin // International Symposium on Advances in Hydroprocessing of Oil Fractions ISAHOF. – Mexico, 2015. – P. 143-144.
- Varakin, A. The role of carrier's carbonization degree on the HDO conversion of the oleic acid over the CoMo/C/Al₂O₃ catalysts / Varakin A., Salnikov V., Nikulshin P.// 12th European Congress on Catalysis – EuropaCat-XII. – Kazan, 2015. – P.206.
- 20. Никульшин, П.А. Влияние зауглероживания носителя на свойства CoMo/C/Al₂O₃ катализаторов в гидродеоксигенации олеиновой кислоты / П.А. Никульшин, А.Н. Варакин, В.А. Сальников // материалы докл. II Российского конгресса по катализу «РОСКАТАЛИЗ».– Самара, 2014. С. 98.
- 21. Варакин, А.Н. Влияние зауглероживания носителей на активность катализаторов CoMo/C//Al₂O₃ в гидродеоксигенации олеиновой кислоты /

Варакин А.Н., Никульшин П.А., Вишневская Е.Е., Сальников В.А. // материалы докл научно-технологического симпозиума Нефтепереработка: катализаторы и гидропроцессы. – Пушкин, Санкт-Петербург, 2014. – С.115.

- 22. Varakin, A.N. Effect of the hydrogen spillover on the hydrotreating reactions over aluminasupported CoS_X and bulk MoS₂ / A.N. Varakin, P.A. Nikulshin, Al.A. Pimerzin, V.A. Salnikov, A.A. Pimerzin // 6th International symposium on the molecular aspects of catalysis by sulphides. France, 2013. Poster 32.
- 23. Шелдаисов-Мещеряков, А.А. Исследование реакции гидрообессеривания дибензотиофена в присутствии массивного дисульфида молибдена MoS₂ / А.А. Шелдаисов-Мещеряков, А.Н. Варакин // материалы докл. XXXIX самарской областной студенческой научной конференции, – Самара, 2013. – С. 15.
- 24. Варакин, А.Н Исследование влияния эффекта спилловера водорода на активность массивного MoS₂ в гидрогенизационных реакциях / А.Н. Варакин, П.А. Никульшин, Ал.А. Пимерзин, В.А., Сальников А.А. Пимерзин // материалы докл. Всероссийской научной конференции «Переработка углеводородного сырья. Комплексные решения» (Левинтерские чтения-2012). Самара, 2012. С. 32.
- 25. Варакин, А.Н. Исследование влияния эффекта спилловера водорода на активность массивного MoS₂ в гидрогенизационных реакциях / А.Н. Варакин, П.А. Никульшин, Ал.А. Пимерзин, В.А. Сальников, А.А. Пимерзин // материалы докл. V молодежная конференция ИОХ РАН. Москва, 2012. С. 79-80.

Автореферат отпечатан с разрешения диссертационного совета Д 212.217.05 ФГБОУ ВО «Самарский государственный технический университет» (протокол № 3 от 30 апреля 2020 г.) Заказ № ____ Тираж 100 экз.

Формат 60х84/16. Отпечатано на ризографе.

ФГБОУ ВО «Самарский государственный технический университет» Отдел типографии и оперативной печати 443100 г. Самара ул. Молодогвардейская, 244